I numeri interi relativi - Elevamento a potenza
ELEVAMENTO A POTENZA IN Z [I1] [ES1] [ES2]
DEFINIZIONE: Dato un numero intero a e un numero naturale n, la potenza n-esima di a è:
• il prodotto di n fattori tutti uguali ad a se n>1 , in simboli an=a•a•a•.......•a ( n volte)
• 1 se n=0 e a0 in simboli a0=1
• a se n=1, in simboli a1=a
Per un calcolo rapido si possono usare le seguenti regole che derivano dalla definizione di potenza:
• se la base è positiva allora la potenza è sempre positiva;
• se la base è negativa allora la potenza è positiva se l'esponente è pari, mentre è negativa se l'esponente è dispari.
Esempi:
(+5)2 = +25
(+5)3 = +125
(–5)2 = +25
(–5)3 = –125
Per le operazioni con le potenze valgono le stesse proprietà viste nell'insieme N.
Risponderemo in altra occasione a cosa succede se l'esponente è negativo. Infatti tali potenze non possono essere definite in
Z
30/48
|